本资讯是关于给人工智能提供算力的芯片有哪些类型,请问intel Xeon Platinum 9282和AMD EPYC 7742这两款处理器各自的双精度浮点理论峰值性能是多少,Intel和AMD的芯片优劣各是什么,英特尔 至强处理器 e5-2609计算能力多少相关的内容,由数字区块链为您收集整理请点击查看详情
Ⅰ 给人工智能提供算力的芯片有哪些类型
给人工智能提供算力的芯片类型有gpu、fpga和ASIC等。
GPU,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器,与CU类似,只不过GPU是专为执行复杂的数学和几何计算而设计的,这些计算是图形渲染所必需的。
FPGA能完成任何数字器件的功能的芯片,甚至是高性能CPU都可以用FPGA来实现。 Intel在2015年以161亿美元收购了FPGA龙 Alter头,其目的之一也是看中FPGA的专用计算能力在未来人工智能领域的发展。
ASIC是指应特定用户要求或特定电子系统的需要而设计、制造的集成电路。严格意义上来讲,ASIC是一种专用芯片,与传统的通用芯片有一定的差异。是为了某种特定的需求而专门定制的芯片。谷歌最近曝光的专用于人工智能深度学习计算的TPU其实也是一款ASIC。
(1)intel芯片算力扩展阅读:
芯片又叫集成电路,按照功能不同可分为很多种,有负责电源电压输出控制的,有负责音频视频处理的,还有负责复杂运算处理的。算法必须借助芯片才能够运行,而由于各个芯片在不同场景的计算能力不同,算法的处理速度、能耗也就不同在人工智能市场高速发展的今天,人们都在寻找更能让深度学习算法更快速、更低能耗执行的芯片。
Ⅱ Intel 都有哪些芯片组
转贴nIntel 430FX芯片组是Intel公司生产的第一款芯片组,当时Intel公司就凭它在芯片组领域一炮打红,从此Intel CPU配Intel芯片组主板性能极佳的说法被人们广为流传。Triton First芯片组,其是当时最早提供对EDO DRAM支持的奔腾级芯片组,它所构建的以高速EDO DRAM与第一代原始Pentium处理器相配和的方案在很长一段时间内都是追求高性能用户的理想选择。此款芯片组的CACHE类型为管线突发式,最大容量为512KB,缓存容量为64MB。在内存方面,他最大支持128MB的内存容量,EDO DRAM读取时间为7-2-2-2 FPM DRAM读取时间为7-3-3-3,数据带宽为64BIT,这在当时是很难想象的。 n2、 Intel 430VX芯片组 n430VX芯片 nIntel在推出了两款最成功的CPU之后突然觉得还缺点什么,原因是原始的FX芯片不能满Pentium MMX CPU的需要,而HX芯片组性能好,但它昂贵的价格并不能被一般用户所接受。所以Intel急需推出一款新的芯片组来补充FX芯片组与HX芯片组之间的真空地带。就是在这种情况下Intel 430VX芯片组诞生了,人们习惯的称它为Triton Three。但人们发现这款Triton Three在性能上并不比Triton 2强,只是他低廉的价格被经济不富裕得人津津乐道。 n3、 Intel 440LX芯片组 n随着CPU制造工艺的高速发展,一款功能强大的Pentium II处理器终于横空出世了。为了推广这款CPU,1997年5月,Intel特意为它定做了一套新衣服——440LX芯片组。首次支持AGP、SDRAM和Ultra/33功能,而且它支持两个处理器,是当时最强劲的芯片组。 n4、 Intel 440BX芯片组 n440BX芯片 nIntel 440BX芯片组是寿命最长的一款芯片组,也可以说是Intel公司最成功的芯片组产品了,直到今天它还是被很多人津津乐道。这款440BX配合Intel的Celeron CPU能发挥出极好的超频效果,而且它的价格也不昂贵,所以它在长达两年的时间里一直被广大DIY爱好者所喜爱。 n5 、Intel 810芯片组 nIntel 810芯片组 n继成功推出Intel BX之后,Intel便下了大赌注全部投在下一代芯片组产品上,这就是I810。I810不仅仅是Intel首款整合型芯片组产品,同时也是Intel尝试的新式“固件控制中心”架构式设计,一改以往的南北桥设计,这种新式的设计独道之处在于,将各部分性能分解成为独立的芯片,重新设计了芯片间通道的传输方式和速度,因而在性能上得以提高。不过,这款产品的市场反映并不是很好,使Intel有些黯淡。 n6、 Intel 820芯片组 nIntel 820芯片组 n有了RAMBUS的助阵,加之I820的许多新设计,Intel便在梦想着收复所有失去的芯片组领地,但是事实又给了Intel重重的一击。因为RAMBUS内存的授权权益金相当高昂,加之RAMBUS内存的生产成本居高不下,对于普通的用户来说简直是无法想像的。I820的上市,可以说是让Intel用钞票买来了一个教训,因为Intel在I820身上损失惨重。 n7、 Intel 815芯片组 nIntel 815芯片组 n时近千禧年末,Intel传来了一个好消息,那就是简洁版的I815芯片组I815EP全面上市,除了增加了对ATA100的支持以外,还去掉了内置的昂贵I752显示模块。这下,性价比大幅提升,是I815EP主板在PIII市场呼风唤雨。 n8、 Intel 850芯片组 nIntel 850芯片组 n2000年11月21日,Intel发布了新一代的奔腾处理器—奔腾四,采用Willamette核心,Sock423接口,配套的芯片组产品是I845和I850,I845支持PC-133 SD内存,而I850则使用Rambus内存,这是820芯片组回收时间后,Intel再次推出支持Rambus内存的芯片组。 n9、 Intel 845D主板 nIntel 845D主板 nI845D的发布,也意味着P4芯片组正式跨入了Socket 478时代,开始提供对DDR内存的支持。 n10、 Intel 845PE主板 nIntel 845PE主板 n支持400/533MHZ前端总线设计的处理器,提供对单通道DDR333 内存的支持。支持超线程技术。提供对AGP4X总线规范的支持。 n11、 Intel 845E主板 nIntel 845E主板 n提供对400/533MHZ前端总线设计,采用SOCKET 478接口处理器的支持。支持单通道DDR333内存。 n12 、Intel 845G主板 nIntel 845G主板 n整合EXTREME GRAPHICS显示核心。提供对400/533MHZ前端总线处理器的支持。支持单通道DDR333内存。 n13、 Intel 848P主板 nIntel 848P主板 n支持400/533/800MHZ前端总线设计的处理器,支持单通道DDR400内存。支持AGP 8X总线规范。提供2个SATA接口。 n14、 Intel 865PE主板 nIntel 865PE主板 n支持400/533/800MHZ前端总线设计的处理器。支持双通道DDR400内存。提供2个SATA接口,搭配ICH5R南桥芯片,可是实现多种RAID模式。 n15、 Intel865G主板 nIntel865G主板 n板载EXTREME GRAPHICS 2显示核心。支持400/533/800MHZ前端总线设计的处理器。支持双通道DDR400内存。提供2个SATA接口。 n16、 Intel 875P主板 nIntel 875P主板 n与865PE芯片主板最大的区别在于支持PAT功能,另外提供对ECC内存的支持。 nIntel915X系列芯片组不仅是LGA775接口处理器的最佳搭档,还将众多全新技术引入了实际应用。915X完全抛弃了AGP总线,改为使用更先进的PCI-E总线,可为图形芯片和高速存储设备以及网络设备带来更高的数据传输带宽,,是近年来电脑系统中最具革命性的总线升级。突破性的支持DDR2内存,此举表明了未来芯片组的发展方向。搭配ICH6系列南桥芯片支持HD-AUDIO音频规范,支持RAID功能的ICH6R还提供了全新的MATRIX STORAGE功能,兼顾了成本、性能和安全。 n17、 Intel915P主板 nIntel915P主板 n提供对533/800MHZ前端总线设计,采用LGA775接口的处理器。支持双通道DDR2/DDR内存。提供4个SATA接口。提供对全新PCI-E总线的支持。 n18 、Intel915GL主板 nIntel915GL主板 n整合GMA900图形核心,支持DX9.0特效。支持533/800MHZ前端总线设计,采用LGA775接口的处理器。内存方面仅提供对DDR内存的支持。提供4个SATA接口。 n19、 Intel915PL主板 nIntel915PL主板 n支持533/800MHZ前端总线设计,采用LGA775接口的处理器。内存方面仅提供对双通道DDR内存的支持,内存插擦也减少为2条。提供4个SATA接口。 n20、 Intel915GV主板 nIntel915GV主板 n整合GMA900图形核心,支持DX9.0特效。支持533/800MHZ前端总线设计,采用LGA775接口的处理器。内存方面仅提供对双通道DDR内存的支持。不提供PCI-E X16显卡插槽。提供4个SATA接口。 n21、 Intel910GL主板 nIntel910GL主板 n主要针对OEM市场的产品。支持533MHZ前端总线设计,采用LGA775接口处理器的。提供4个SATA接口。 n22 、Intel915G主板 nIntel915G主板 n板载GMA900图新核心,支持DX9.0特效并提供PCI-E显卡插槽。支持533/800MHZ前端总线设计,采用LGA775接口的处理器。提供4个SATA接口。 n23、 Intel925X主板 nIntel925X主板 n支持533/800/1066前端总线设计,采用LGA775接口的处理器。支持EM64T技术。提供对DDR2内存规范的支持。搭配ICH6R南桥芯片支持MATRIX STORAGE功能。 n945X/955X的出现来临预示着个人电脑开始向双核芯时代迈进,同时支持EM64T技术。配合ICH7/R南桥芯片,提供对SATA2 规格的支持。945G整合GMA950图形核心,较GMA900核心频率有所提高,3D MARK03测试成绩接近5200独立显卡。 n24、 Intel945G主板 nIntel945G主板 n整合高效的GMA950图形核心,并提供PCI-E显卡插槽。支持双核心处理器。支持DDR2 533/667内存。提供对SATA2传输规范的支持。 n25、 Intel945P主板 nIntel945P主板 n支持533/800/1066前端总线设计,采用LGA775接口的处理器。支持双核心技术。提供4个SATA2接口。搭配ICH7R南桥芯片支持RAID功能。 n26、 Intel955X主板 nIntel955X主板 n支持533/800/1066前端总线设计,采用LGA775接口的处理器。提供对双核心处理器的支持。支持双通道DDR2 533/667内存。支持ECC内存。最大支持8GB内存。 n祝楼主事业有成,完事如意!!
Ⅲ 英特尔 至强处理器 e5-2609计算能力多少
在算数处理器能力的测试项目中,总计本地功效达到了46GOPS的成绩。
Ⅳ Intel Xeon E5-2697 v2的CPU的峰值计算能力和Intel Xeon E7-8870的CPU的峰值计算能力哪个强
必然Xeon E5-2697 v2运算能力强!n首先,看核心数:Xeon E5-2697 v2是12核心24线程 Xeon E7-8870是10核心20线程n看技术架构平台:Xeon E5-2697 v2平台很新,Ivy Bridge架构 22nm制作工艺n Xeon E7-8870很老,应该是2010年的技术 32nm的制作工艺n不过两个CPU可比性不太强:Xeon E5-2697 v2我记得是支持双路跟单路系统,而Xeon E7-8870支持8路CPU系统。n n反正在性能上Xeon E5-2697 v2完胜Xeon E7-8870的。Xeon E5-2697 v2是一代神U,也就除了新出的Xeon E7-8890 v2(15核30线程)还能虐它
Ⅳ Intel和AMD的芯片优劣各是什么
1、从单晶硅工艺上:INTEL:0.09(降低成本,加大晶体管数量),AMD:0.13(成本比0.09的高),所以导致在都降低相同比例的价格后,INTEL还是挣钱,而AMD最起码不会挣太多的钱啦,搞不好还会陪钱(亏损),虽然市场占有率有所提高,尽而导致最近的AMD诉讼案的发生 2、从流水线上:INTEL:31级(可以提升到更高的主频,但带来更大的发热量:例如P4-670超到7.4G,但得用液氮来散热,而且容易造成指令执行效率低下,所以搞出个超线程来弥补);AMD:20级(指令执行的效率比31级强,但频率提升有限而发热量相对要低,效率和频率是2个不同的发展方向,主要看使用者的选择了) 3、缓存:INTEL:1级16K,2级1M-2M(整数运算以及游戏性能没有AMD的快(还有一个主要原因在起作用,后面再讲),但对于网络和多媒体(浮点运算)的应用比对手强 AMD:1级128K,2级:512K(整数运算快,游戏性能好,但对于多媒体的应用稍微逊色) 4、内存管理架够:INTEL的内存管理架够还是采用传统的由主板上的南北桥方式来管理(造成CPU与内存之间的数据传输延时大,对于游戏执行效果没有AMD的好,但对于日后升级成本有所降低)AMD是CPU内部集成内存控制器(减少了CPU与内存数据传输的延时,(对于游戏性能的提升有相当大的作用,也是前面所说的主要原因,同时也弥补了2级只有512K的所对多媒体应用的不足,但加大了对日后升级的成本的增加:要升级的话您只好把CPU和内存以及主板全都换掉) 5、指令集 INTEL:MMX,SSE,SSE2,SSE3,EM64T (大多数游戏以及软件基于INTEL的指令,对于INTEL有所优化,但64位指令对于现在新的64位系统有兼容性的缺点,所以最近不得不兼容于AMD的X86-64指令,CPU的步进值也从E0变到G1)AMD:3DNOW+,MMX,SSE,SSE2,SSE3,X86-64(在所支持的SSE3中少了2条指令,但问题不大,因为那2条是专门针对INTEL超线程技术的,没有也罢,反正AMD也不支持超线程技术,由于AMD的64位技术源于DEC公司的Alpha技术(64位技术之一),再加上AMD自己的2次开发,所以导致64位技术快速的在民用市场的出现,微软64位系统也不得不基于AMD的X86-64位开发(谁叫AMD先推出民用的64位呢),为了尽快消除对于64位的WINDOWS兼容性的问题,INTEL也被迫开始兼容AMD的64位指令(不是INTEL没有技术开发64位,是由于它的市场策略导致其非常被动,错过了推出64位的最佳时机,让AMD就64位而言站了上风,谁让这2家公司最终还得看微软的脸色呢,从这点上讲,他们还没完全达到市场垄断的地位---硬件厂商还得看软件巨头的脸色,真悲哀!) 综上所诉:现在谁的性价比更高是要看使用者的应用范围(也必然由应用范围来决定),而并不是简单的由价格来决定的,我更不同意所谓的穷人才用AMD的说法。由于INTEL感觉来自AMD的压力所以公司在发展战略上做出了重大的决策的改变(从一味追求频率到追求性能的转变,也不得不放弃由INTEL公司自己创造出来的摩尔定律这个神话,全面转向CPU性能的提升,CPU在3.8G这个频率上画上了个小小的句号,让10G的目标成为了泡影;具可靠的消息:INTEL以后的CPU架够将是基于现在移动CPU的技术上,并且提出了性耗比的概念(而非性价比)并且近期已经成功研发出样品,就性能而言将是现在P4的3倍--5倍,而功耗从笔记本的CPU的5W到台式机CPU的35W到服务器CPU的65W,核心将是双核心或者是4核心,前端总线为:533MHZ,667MHZ,800MHZ,1066MHZ;不再有超线程技术(因为没有必要了,超线程技术的出现主要是来弥补由于流水线过长而导致的效率低下,新的INTEL的CPU不会再用31级流水线,可能只有不到20级或者更底),频率不会超过现有的频率(这意味着3.8G将是INTEL现在乃至以后最高频率)在即将到来的2007年的大较量(INTEL和AMD)中将一决高下,到时候谁胜谁负,谁好谁坏,谁的性价比或者性毫比更高将一目了然,说实话有点为AMD担心(AMD近期曾表示不会对现有的CPU架够改变)我还是相信那句话:时间会说明一切的!谁将是消费者最应该期待的产品呢?相信在不远的时间里将会出现! 对AMD来说,其最受人欢迎的地方,就是它良好的超频性能和低廉的价格,这是它目前占有处理器市场份额的根本原因,也是它的优势。在我们选择时,如果是DIY高手,那选择AMD是肯定没错,能花较少的钱获得更好的性能,价格上同主频的AMD与Intel,前者价格只是后者的一半左右,而且现在AMD的处理器的主板大多数都有傻瓜超频的软件,虽然不能把超频发挥到极限,但也能过一下超频的瘾。而AMD的发热问题一直是大家最关心的问题,其实不然,现在AMD的处理器多加入了过热保护的芯片,所以发热问题已经基本上得到了解决,不必顾虑。 在购买AMD的产品时要注意,由于它良好的超频性能,使一些*商们开始出售低频版本超频后再打磨的产品,如何识别是不是打磨过的产品,最简单的办法就是看处理器的L2和L3金桥有没有人为切割或焊接的痕迹。如果仍不放心,那么盒装三年质保的AMD产品也是不错的选择。其次就是风扇的选择,AMD处理器超频后的发热问题(注:超频后发热与不超频时发热不同),一直是DIY们最关心的,所以选择一个好的风扇也是至关重要的。 Intel则向来以稳定著称,对多媒体有较好的指令支持,比较适合一些多媒体爱好者、办公室装机、以及一些不太懂电脑的家庭装机。从超频上来看,由于所有Intel处理器都是锁倍频的,所以在超频上显不出多大优势来,虽然锁了倍频,但也还是能超,只是超频的范围较小,笔者在不改电压的情况下,将一块P4 2.4 BG的超到了3.0G,且在一些3D游戏中如FIFA 2004时能稳定运行,所以Intel的稳定性还是值得我们信耐的。价格上来说,Intel的处理器比起AMD来说可算是高高在上,虽然IT行业里一分钱一分货,但也不乏有一定的垄断因素在里面,但是它优异稳定的性能,使得不少电脑爱好者在装机时,仍然将其设为首选。也正是因为它的稳定,所以许多品牌电脑大多采用了Intel的处理器,可见Intel的稳定性非同一般。这样,在一个不太懂电脑的家庭装机和商用装机机,Intel的处理器有着不可代替的地位。够买Intel的处理器时,由于都锁了倍频,无论是散装还是盒装都可以放心购买,不会出现像AMD那样的打磨产品。但要特别注意的就是在购买盒装产品时,一些*商往往用散装处理器配上假冒Intel风扇,重新包装后来当盒装产品销售,鉴别的方法单从外观上很难辨别,主要就是看里面的硬塑料包装是否有拆开过的痕迹,再看说明书是印刷品还是复印的,假冒的一般都是复印品。还有就是可以看盒装产品里面赠送的小徽标(就是品牌机外面都贴着印有的Intel Inside的小贴片),真品的小徽标厚而硬,外面有一层较硬的塑料,假货则比较薄,用手指也能把上面的图案刮下来,有的假货甚至没有小徽标。现在散装的Intel处理器与盒装的价格相差不到几十块,而且盒装产品还赠送一个原装风扇,不必在单独购买风扇,所以购买盒装产品是个不错的选择。
Ⅵ 请问intel Xeon Platinum 9282和AMD EPYC 7742这两款处理器各自的双精度浮点理论峰值性能是多少
如果我算的不错的话,7742的双精算力应该是1280GFlopsn9282则是1164.8GFlops,如果指令支持avx512的话(当然这种情况很少),他的算力可以到4659.2GFlops
Ⅶ 英特尔酷睿i9-10980XE评测
英特尔在今年10月初正式发布了第十代酷睿X系列处理器,作为桌面端发烧级旗舰产品,第十代酷睿X系列处理器依旧采用了14nm++工艺打造,核心代号为Cascade Lake-X,首发有4个型号,分别是18核心的i9-10980XE、14核心的i9-10940X、12核心的i9-10920X以及10核心的i9-10900X,依旧采用LGA2066接口,现有的X299主板升级BIOS后即可使用。
一.产品简要解析
第十代酷睿X系列处理器集成了IntelDeep Learning Boost技术,可实现AI加速功能;而Intel Turbo Boost Max Technology 3.0技术也进一步增强,可让处理器最好的核心睿频加速至4.8GHz;此外,四款产品均支持48条直连PCI-E通道,比第九代酷睿X的44条又多了4条。
当然,第十代酷睿X处理器最引人注目的特点就是价格了,四款产品的上市指导价分别为979$、784$、689$、590$,相比第九代酷睿X处理器的首发价可谓是大幅下降。同样的预算,去年这个时候只能买到10核心的酷睿i9-9900X,而今年就可以买到18核心的酷睿i9-10980XE了。
下图为本次评测的主角酷睿i9-10980XE,正面:
酷睿i9-10980XE的背面:
本次我们拿到的是i9-10980XE ES版,CPU-Z 1.90.1版本已经可以基本识别出这颗处理器的各项参数信息。
可以看到,
酷睿i9-10980XE同样保留了对AVX-512指令集的支持
。借助多达两个 512 位融合乘加 (FMA) 单元,应用程序在 512 位矢量内的每个时钟周期每秒可打包 32 次双精度和 64 次单精度浮点运算,以及八个64位和十六个32位整数。因此,AVX-512指令集与AVX2指令集相比,其数据寄存器的宽度、数量以及 FMA 单元的宽度都增加了一倍,能帮助专业用户处理最苛刻的计算任务。当然,略显遗憾的是在消费级市场中支持AVX-512指令集的软件和游戏并不多,所以在很多应用场景下,酷睿X系列处理器还不能完整发挥出最大性能。
为了区分产品线,英特尔普通的酷睿处理器只支持Turbo Boost 2.0,而包括酷睿i9-10980XE在内的酷睿X系列处理器则支持更先进的Turbo Boost MAX 3.0,通过识别处理器的最快内核并让其处理最关键的工作负载,使轻量级线程性能得到优化。下图为这个功能的驱动软件,已经整合在Windows 10系统的更新驱动包内。
而通过HWiNFO64软件,我们可以准确的识别出酷睿i9-10980XE在各不同负载下,各个核心的动态加速频率。
可以看到,相比于酷睿i9-9980XE,酷睿i9-10980XE主要对少数核心的睿频有所增强,借助Turbo Boost MAX 3.0技术,两颗最好的核心最大睿频可达4.8GHz。而在全核心睿频方面,酷睿i9-10980XE没有提高,SSE负载睿频为3.8GHz、AVX2负载睿频为3.3GHz、AVX-512负载睿频为2.8GHz,和酷睿i9-9980XE相同。
酷睿i9-10980XE和酷睿i9-9980XE设定AVX offset的原因也很简单,就是为了控制AVX指令集所带来的高功耗和高发热。当然部分高端主板可以将AVX2、AVX512负载的全核睿频解锁至3.8GHz,以带来更强的性能。(本次评测为了客观展现处理器默认状态下的性能,所以常规测试中在睿频调度上将完全遵照英特尔官方的设定。)
二.测试平台与说明
本次酷睿i9-10980XE评测,首先对比的是自家上一代的旗舰产品酷睿i9-9980XE,同时加入了核心数量差不多、定价也接近的AMD锐龙9 3950X与之进行对比。
英特尔LGA2066平台的主板选择了华硕ROG STRIX X299-E GAMING II,这款主板定位于中高端,为顶级的电竞游戏爱好者打而造。这款主板将时尚前卫的电竞图腾与利落的线条设计完美的融合在一起,再配合上华硕独家的AURA RGB灯效,点亮后非常炫酷。
用料方面则采用12 Power Stages供电模组设计和全新升级的ProCool II供电接口,带动酷睿i9-10980XE可谓是完全没有压力。而在MOS散热片加入了热管,再配合内置40mm的隐藏式智能温控启停VRM散热风扇,让主板的散热性能更好,温度控制在合理范围内,以增强各个电子元器件的使用寿命。
而AMD AM4平台的主板我们使用了微星MEG X570 GODLIKE超神版,作为消费级主板中的旗舰,带动锐龙9 3950X同样没有压力。
内存方面使用了4根芝奇皇家戟8GB 3600 C16,在LGA2066平台上组成四通道。显卡则使用公版RTX 2080 SUPER。
而为了压制住这几颗超多核处理器所带来的高发热,散热器方面我们选择了酷冷至尊冰神P360 ARGB银色版。
三.基准性能测试
首先是AIDA64内存与缓存测试,由于酷睿i9-10980XE定位于HEDT发烧平台,支持四通道内存,所以在读取和写入速度上大幅领先双通道内存的锐龙9 3950X。
酷睿i9-10980XE采用了Mesh网状架构,在内存延迟上相比自家采用Ringbus总线的小核心处理器有所退步,和采用Infinity Fabric总线的锐龙9 3950X处于一个水平。
SuperPI
是一个考察处理器单线程性能的传统测试工具,使用x87指令,在这项测试中酷睿i9-10980XE充分发挥了Turbo Boost MAX 3.0技术的4.8GHz单核高睿频,可以在7.75秒内跑完1M,相比单核睿频4.5GHz的酷睿i9-9980XE提高不少,也领先于锐龙9 3950X。
y-cruncher
是计算圆周率等数学常数的软件,比SuperPI效率更高,创造了计算圆周率的世界纪录。由于y-cruncher对AVX-512指令集的支持非常好,所以酷睿i9-10980XE和酷睿i9-9980XE的测试成绩大幅领先只支持AVX2指令集的锐龙9 3950X。
在
CPU-Z
测试中,V17版本酷睿i9-10980XE的单核分数相比酷睿i9-9980XE有所提高,不过依然小幅落后于锐龙9 3950X。
而到了V19版本AVX2测试,由于这项测试调用了大量的FMA指令,而Zen2后端执行端口为2×256bit FMUL+×256bit FADD的乘加分离设计,在执行FMA融合乘加计算时的效率并不高。所以酷睿i9-10980XE成功反超了锐龙9 3950X。
Geekbeech5
是一款跨平台CPU测试软件,在这项测试中,酷睿i9-10980XE凭借着更多的物理核心,所以多线程分数略强于锐龙9 3950X。而单核分数上,锐龙9 3950X则在此项测试中表现最好,而酷睿i9-10980XE也比酷睿i9-9980XE略有提高。
SiSoftware Sandra 2020
是一个十分强大的windows系统分析评测工具。集合了系统分析、诊断、测试和报告工具,包括众多的分析与测试模组,能够全面的测试处理器性能。
在算数处理器测试中,由于这项测试只使用AVX2指令集,没有使用AVX-512指令集,所以三款处理器的得分基本处于一个级别。
多媒体处理器、影像处理、加密解密性能、的科学分析等测试项全都对AVX-512指令集有着良好的支持,所以酷睿i9-10980XE在这几项测试中能够完整发挥最大性能,自然可以完胜只能使用AVX2指令集的锐龙9 3950X。
多媒体处理器:
影像处理:
加密解密性能:
的科学分析;
不过酷睿i9-10980XE在SiSoftware Sandra 2020的众多测试项目中也并不是无敌的,例如在财务分析测试中就输给了锐龙9 3950X。
在
AIDA64
的众多测试项目中,FPU Mandel和FPU Julia以及CPU PhotoWorxx这三个项目对AVX-512指令集支持很好,酷睿i9-10980XE凭借着指令集的优势,要领先锐龙9 3950X不少。
FPU Mandel:
FPU Julia:
CPU PhotoWorxx:
而在FP32 Ray-Trace和FP64 Ray-Trace浮点光线追踪运算中,不但对AVX-512指令集有很好的支持,同时又需求高内存带宽,所以酷睿i9-10980XE相比锐龙9 3950X优势极大。
而CPU Queen、CPU Zlib、FPU SinJulia这三项测试由于不能调用AVX-512指令集,所以酷睿i9-10980XE相比锐龙9 3950X无法取得领先优势。
而在CPU AES测试中,由于AMD处理器都额外支持Hash加速指令,所以酷睿i9-10980XE大幅落后于锐龙9 3950X。
GPGPU Benchmark可以调动处理器的所有算力,AVX-512指令集可以被充分利用,酷睿i9-10980XE展现出了强大的单精度浮点和双精度浮点,甚至可以媲美专业计算显卡!
四.应用、创作、渲染能力测试
在
WinRAR
压缩与解压的基准测试中,酷睿i9-10980XE相比酷睿i9-9980XE略有微小的提升,扩大了对锐龙9 3950X的领先优势。
而在另一款压缩与解压缩软件
7-Zip 19.00
版本的基准测试中,酷睿i9-10980XE同样相比酷睿i9-9980XE提升不大,和锐龙9 3950X相比则互有胜负。
CoronaRender渲染器是业界后起之秀,在渲染质量和速度上其实非常优秀。酷睿i9-10980XE在
Corona 1.3 Benchmark
中相比锐龙9 3950X有一定程度上的性能优势,又由于更高的频率,所以相比酷睿i9-9980XE也有一定程度上的提高。
v-ray是由专业的渲染器开发公司CHAOSGROUP开发的渲染软件,是业界很受欢迎的渲染引擎。在
v-raybenchmark
中,酷睿i9-10980XE相比酷睿i9-9980XE有微小提升,也扩大了对锐龙9 3950X的领先优势。
再来看
Cinebench R15和R20
,前者是纯128bit SSE测试,后者虽然支持少量AVX2指令集但也不支持FMA,都不支持AVX-512指令集。故这两个测试无法体现出酷睿i9-10980XE拥有AVX-512指令集的优势。
又由于酷睿i9-10980XE在运行这两个测试时的全核心睿频只有3.8GHz(R20虽然支持AVX2但无法触发AVX offset),设定稍显保守,所以在测试上结果落后于锐龙9 3950X,不过幅度并不大。
同样的问题发生在
x264 benchmark
中,由于测试中AVX-512指令集没有被调用,所以酷睿i9-10980XE落后于锐龙9 3950X。
五.游戏性能
在
3DMark物理测试
中,酷睿i9-10980XE在常规的SSE3指令集项目中Fire strike和Time Spy上落后于锐龙9 3950X。
不过在最新的Time Spy Extreme项目上,测试结果出现了反转,当选择AVX2指令集时,酷睿i9-10980XE、酷睿i9-9980XE和锐龙9 3950X三者处于同一个水平。
而选择开启AVX-512指令集进行测试后,由于锐龙9 3950X不支持AVX-512、只能拿AVX2硬顶,所以得分几乎没有变化;而酷睿i9-10980XE和酷睿i9-9980XE则提高了2500分左右,成功甩开了锐龙9 3950X。
通过《刺客信条:奥德赛》《孤岛惊魂5》《奇异小队》和《古墓丽影:暗影》这四款游戏的benchmark表现,我们可以看到这三款处理器的游戏性能基本处在同一个水准,锐龙9 3950X略微领先一些。造成这样结果的原因也很简单,由于酷睿i9-10980XE相比锐龙9 3950X,已经没有了英特尔LGA1151针脚主流级处理器的高主频以及低内存延迟优势,所以也很难在游戏性能上获得领先。
不过对于重度游戏玩家来说,这三款超多核处理器显然都不是最佳选择,8核心5GHz高睿频、Ringbus低内存延迟的酷睿i9-9900KS才是最优解。
六.超频测试,简单调教后性能还有不少提升空间
此前我们讲到,酷睿i9-10980XE的全核心SSE负载睿频只有3.8GHz,AVX2频率全核心3.3GHz、AVX-512全核心频率2.8GHz。设定稍显保守,导致在很多不支持AVX-512的老旧测试项目中表现并不理想。为了获得更多的性能,我们对其进行超频测试。
由于时间有限,所以笔者并没有对超频后的酷睿i9-10980XE进行详细的性能测试,仅做了几项简短的测试,故无法全面检测超频后的性能提升与稳定性,因此以下的测试结果仅供参考;此外,任何形式的超频也都是有风险的!不建议普通玩家进行尝试。
首先是传统上的手动全核心超频,我们进入BIOS将全核心倍频调整为46,电压设定为1.2V。同时,为了控制AVX2负载和AVX-512负载所带来的高功耗和高发热,我们将AVX offset设定为8,AVX-512 offset设定为12。这样的话处理器在进行日常应用时的满载频率为全核心4.6GHz、AVX2负载为全核心3.8GHz、AVX-512负载为全核心3.4GHz。
开机成功进入系统。
在全核心频率4.6GHz的情况下,酷睿i9-10980XE在此前表现比较弱势的Cinebench中也能取得不错的成绩。R20多线程得分10553分、R15多线程则取得了4534分,提升还是不小的。
而电压设定为1.252V后,可以将全核心超频至4.7GHz,并通过R20测试,多核得分为10711。
当然,作为华硕ROG系列的中高端产品,ROG STRIX X299-E GAMING II还支持AI超频,进入BIOS后在核心倍频选项中可选“AI Optimized”模式。
此时再通过HWiNFO64软件,我们可以看到经过主板的AI超频后,酷睿i9-10980XE在不同负载下的频率相比默认设置皆有所提高。
SSE负载下,单核心睿频为4.8GHz,全核心睿频为4.4GHz(默认为3.8GHz)。
AVX2负载下,单核心睿频为4.0GHz,全核心睿频为3.6GHz(默认为3.3GHz)。
AVX-512负载下,单核心睿频为4.0GHz,全核心睿频为3.6GHz(默认为2.8GHz),
AI超频后,R15得分为4361分、R20得分为10099分。
由于酷睿i9-10980XE拥有高达18个核心,所以如果想让所有核心都运行在很高的频率上是很难的,功耗和发热难以控制。而酷睿X系列处理器还有一个特点,就是每个核心都支持单独的电压与频率调整,因此我们在手动超频时还可以换一种思路,更灵活的提升性能。
在XTU中将两颗体质最好的核心调整为1.29V 5.0GHz,其余16个核心调整为1.2V 4.6GHz。此时再运行R15,多线程分数依旧可以保持在4500分以上,而单核分数则提高到220分!达到了酷睿i9-9900KS的水平。
七.功耗测试
我们使用AIDA64+FurMark对进行拷机,并通过ROG THOR 1200W PLATINUM自带的功耗显示面板记录平台功耗。
如果是进行常规的AIDA CPU拷机,酷睿i9-10980XE会以3.8GHz的全核心频率满载运行,此时平台功耗为469W,控制的还算可以。而如果使用AIDA64的FPU拷机,酷睿i9-10980XE会调用AVX-512指令集,尽管此时的运行频率为全核心2.8GHz,但整机平台功耗却提高到了518W,可见AVX-512指令集带来更强性能的同时也带来了更大的功耗。
基于这种情况,手动超频时一定要选用高端一体式水冷散热器、或定制大排量分体式水冷,再配上功率800W以上的足额电源,并将AVX-512 offset设置的高一些,让AVX-512负载频率处于4GHz以下。
八.总结和购买建议
单纯从性能上看,酷睿i9-10980XE相比酷睿i9-9980XE的提升并不算很大,但由于英特尔的官方定价调整,酷睿i9-10980XE的首发价只有酷睿i9-9980XE首发价的50%左右,所以酷睿i9-10980XE作为“加量还减价”的产品,在“买新不买旧”的情况下比酷睿i9-9980XE有更大的购买价值。
因为价格的大幅度降低,包括酷睿i9-10980XE在内的第十代酷睿X处理器终于不再是令人仰望的天价,进入了500美元-1000美元的市场。而在这个价位的市场中,酷睿i9-10980XE将面对AMD主流桌面级的旗舰处理器锐龙9 3950X的直接竞争。
与锐龙9 3950X相比,酷睿i9-10980XE在常规测试项目(SSE和AVX2指令集)中与锐龙9 3950X表现基本相当,二者互有胜负;
酷睿i9-10980XE最大的优势就在于对AVX-512指令集的支持,在SiSoftware Sandra 2020、AIDA64、y-cruncher等支持AVX-512的测试项目中,酷睿i9-10980XE可以完整发挥性能,相对只能使用AVX2指令集的锐龙9 3950X,能够取得明显的领先优势,
少则15%、多则接近50%!
此外,酷睿i9-10980XE作为HEDT平台,搭配X299主板后,其拥有的四通道内存和72条PCI-E通道(其中48条为CPU直连),可以提供更强的连接性和拓展性,例如让PCI-E 16x+16x通道双显卡完全发挥性能的同时,还不影响PCI-E通道固态硬盘的读写速度,这也主流桌面级处理器锐龙9 3950X难以比拟的。
综上所述,
酷睿i9-10980XE相对于锐龙9 3950X所多花费的200多美元,就是贵在了对AVX-512指令集的支持和HEDT平台的拓展性上,
至于这个价差是否值得,那还是要根据购买者的具体使用需求来决定了,例如对于科学模拟、人工智能 (AI)、深度学习、图像和音频/视频处理等应用场景来说,AVX-512指令集确实能够提供很大的帮助,有这些需求的专业用户选择酷睿i9-10980XE就是值得的。
凭借AVX-512指令集,酷睿i9-10980XE成功拉开了与锐龙9 3950X之间的性能差距,不过这并不值得骄傲,反而应该让英特尔感到忧虑,毕竟锐龙9 3950X仅仅是AMD产品线中的主流桌面级旗舰罢了。而AMD的HEDT产品线,起步24核心的第三代线程撕裂者也将在近期发售,在巨大的核心数差距面前,即使酷睿i9-10980XE拥有强大的AVX-512指令集,也难以占到便宜,或许这也是英特尔对酷睿i9-10980XE进行大幅度降价的原因,从而避开和第三代线程撕裂者正面竞争。不过英特尔作为处理器市场中的领导者,没有人相信它会长期放弃1000美元以上的超高端消费市场,那么接下来面对AMD来势汹汹的第三代线程撕裂者,英特尔又将带来什么样的新品与之应对呢?让我们敬请期待吧!
Ⅷ Intel芯片组的现状
台式机芯片组 通过用于台式机的英特尔® 芯片组技术获得增强的音频、数字视频和通信能力。n高性能台式机芯片组n主流台式机芯片组 笔记本电脑芯片组 过用于笔记本电脑的英特尔® 芯片组技术获得增强的音频、数字视频和通信能力。n高性能芯片组n主流芯片组n经济型芯片组 工作站与服务器芯片组 英特尔® 3000 芯片组 服务器 1 英特尔® 至强® 处理器 3000Δ 系列 1066/800/533 MHz 英特尔® 3010 芯片组 服务器 1 英特尔® 至强® 处理器 3000Δ 系列 1066/800/533 MHz 英特尔® 3200 芯片组 服务器 1 英特尔® 至强® 处理器 3000Δ 系列 1333/1066/800 MHz 英特尔® 3210 芯片组 服务器 1 英特尔® 至强® 处理器 3000Δ 系列 1333/1066/800 MHz 英特尔® 3400 芯片组 服务器 1 英特尔® 至强® 处理器 3400 系列 不适用 英特尔® 3420 芯片组 服务器 1 英特尔® 至强® 处理器 3400 系列 不适用 英特尔® 3450 芯片组 工作站 1 英特尔® 至强® 处理器 3400 系列 不适用 英特尔® 5000P 芯片组 服务器 1-2 英特尔® 至强® 处理器 5000Δ 系列 1066/1333 MHz 英特尔® 5000V 芯片组 服务器 1-2 英特尔® 至强® 处理器 5000Δ 系列 1066/1333 MHz 英特尔® 5000X 芯片组 服务器与工作站 1-2 英特尔® 至强® 处理器 5000Δ 系列 1066/1333 MHz 英特尔® 5100 内存控制器中枢芯片组 服务器 1-2 英特尔® 至强® 处理器 5000Δ 系列 1066/1333 MHz 英特尔® 5400 芯片组 服务器与工作站 2 英特尔® 至强® 处理器 5400Δ 系列与英特尔® 至强® 处理器 5200Δ 系列 1600/1333 MHz 英特尔® 5500 芯片组 服务器 1-2 英特尔® 至强® 处理器 5500Δ 系列 6.4、5.86 和 4.8 GT/秒¹ 英特尔® 5520 芯片组 服务器 1-2 英特尔® 至强® 处理器 5500Δ 系列 6.4、5.86 和 4.8 GT/秒¹ 英特尔® 7300 芯片组 服务器 4 英特尔® 至强® 处理器 7300Δ 系列 1066 MHz 英特尔® 7500 芯片组 服务器 1-8 英特尔® 至强® 处理器 7500 系列,英特尔® 至强® 处理器 6500 系列与英特尔® 安腾® 处理器 9300 系列 6.4, 5.86, 和 4.8 GT/s¹ 英特尔® 955X 高速芯片组 工作站 1 英特尔® 奔腾® 处理器至尊版、英特尔® 奔腾® D 处理器、支持超线程(HT)技术Ω的英特尔® 奔腾® 4 处理器至尊版、支持超线程(HT)技术Ω的英特尔® 奔腾® 4 处理器至尊版 1066/800 MHz 英特尔® 975X 高速芯片组 工作站 1-2 英特尔® 酷睿™2 至尊处理器、英特尔® 酷睿™2 双核处理器 1066/800 MHz 英特尔® C202 芯片组 服务器 1 英特尔® 至强® 处理器 E3 系列 N/A 英特尔® C204 芯片组 服务器 1 英特尔® 至强® 处理器 E3 系列 N/A 英特尔® C206 芯片组 服务器 1 英特尔® 至强® 处理器 E3 系列 N/A 英特尔® E7205 芯片组 工作站 1 英特尔® 奔腾® 4 处理器 533 MHz 英特尔® E7210 芯片组 服务器 1 英特尔® 奔腾® 4 处理器 800/533 MHz 英特尔® E7221 芯片组 服务器 1 支持超线程技术Ω 的英特尔® 奔腾® 4 处理器 800/533 MHz 英特尔® E7230 芯片组 服务器 1 支持超线程(HT)技术Ω的英特尔® 奔腾® 4 处理器、英特尔® 奔腾® D 处理器 1066/800/533 MHz 英特尔® E7500 芯片组 服务器 1-2 采用 512 K 二级高速缓存的英特尔® 至强® 处理器 400 MHz 英特尔® E8500 芯片组 服务器 1-4 64 位多路英特尔® 至强® 处理器 667 MHz 英特尔® E8501 芯片组 服务器 1-4 英特尔® 至强® 处理器 7000Δ 系列 800 MHz 英特尔® E8870 芯片组 服务器 1-4 英特尔® 安腾® 处理器 400 MHz 采用 E8870SP 组件的英特尔® E8870 芯片组 服务器 1-4 英特尔® 安腾® 处理器 400 MHz 英特尔® X38 高速芯片组 工作站 1 英特尔® 酷睿™2 双核处理器、英特尔® 酷睿™2 四核处理器、英特尔® 酷睿™2 至尊处理器 1333/1066/800 MHz 英特尔® X58 高速芯片组 工作站 1 英特尔® 至强® 处理器 5500 系列与英特尔® 酷睿™ i7 处理器 6.4、5.86 和 4.8 GT/秒¹
免责声明:
本文观点仅代表作者个人观点,不构成本平台的投资建议,本平台不对文章信息准确性、完整性和及时性作出任何保证,亦不对因使用或信赖文章信息引发的任何损失承担责任
0.00